
ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 29

Volume 2(1), 29-49. https://doi.org/10.46386/ijcfati.v2i1.22

Cyber Forensics on Internet of Things: Slicing and

Dicing Raspberry Pi

Shuyuan Mary Ho1, Mike Burmester2

Abstract

Any device can now connect to the Internet, and Raspberry Pi is one of the more popular applications, enabling

single-board computers to make robotics, devices, and appliances part of the Internet of Things (IoT). The low cost

and customizability of Raspberry Pi makes it easily adopted and widespread. Unfortunately, the unprotected

Raspberry Pi device—when connected to the Internet—also paves the way for cyber-attacks. Our ability to

investigate, collect, and validate digital forensic evidence with confidence using Raspberry Pi has become important.

This article discusses and presents techniques and methodologies for the investigation of timestamp variations

between different Raspberry Pi ext4 filesystems (Raspbian vs. UbuntuMATE), comparing forensic evidence with

that of other ext4 filesystems (i.e., Ubuntu), based on interactions within a private cloud, as well as a public cloud.

Sixteen observational principles of file operations were documented to assist in our understanding of Raspberry Pi’s

behavior in the cloud environments. This study contributes to IoT forensics for law enforcement in cybercrime

investigations.

Notes for Practice

• This article serves up a cyber forensics practice example for examining IoT devices interacting in the
cloud.

• Procedures and techniques used to examine file operational behaviors captured by Raspberry Pi and
Ubuntu ext4 filesystems in the cloud are illustrated.

• Sixteen observational principles of IoT file operations have been derived for practitioners’ reference.

Keywords

Timestamp Analysis, Cyber Forensic Techniques, File Systems, Internet of Things, Raspberry Pi, Human-
Computer Interaction, Sociotechnical Cybersecurity.

Submitted: 03/02/2021 — Accepted: 02/04/2021 — Published: 23/05/2021

Corresponding author 1 Email: smho@fsu.edu Address: Florida State University, School of Information, 142 Collegiate Loop, Tallahassee, FL
32306-2100, U.S.A.. ORCID ID 0000-0002-4790-1821.
2 Email: burmeste@cs.fsu.edu Address: Florida State University, Computer Science, 1004 Academic Way, Tallahassee, FL 32306-4530, U.S.A.
ORCID ID 0000-0001-5094-5668.

1. Introduction

Technology is constantly evolving. From the automation of mechanical tools to the introduction of computer chips for

ubiquitous application, cloud computing ushers in yet another new era of technology, where the majority of computational

processing, storage, and analysis can be performed in centralized locations. This change has left “thin client” workstations and

mobile devices with virtually one task—interacting with humans. Meanwhile, new chipset sensor technology enables mobile

devices to collect human behavioral data. The more that mobile devices interact with humans, the more behavioral and

consumption data can be captured and attuned to each individual, household, community, or organization. The era of the

Internet of Things (IoT) allows us to integrate sensor technology with common goods and services, and to collect and profile

users’ behaviors.

The ability of the Internet of Things (IoT) to interact with humans creates opportunities for digital voice assistants like

Alexa1, Siri2, and Cortana3. Enabled by artificial intelligence (AI), natural language processing (NLP), and natural language

1 Alexa is a virtual assistant created by Amazon.
2 Siri is a virtual assistant created by Apple.
3 Cortana is a virtual assistant created by Microsoft.

https://doi.org/10.46386/ijcfati.v2i1.22
https://crossmark.crossref.org/dialog/?doi=10.46386/ijcfati.v2i1.22&domain=pdf

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 30

generation (NLG), these smart and performance-driven support systems enable technological interaction and communication

with humans, incorporating the ability to understand, give/receive commands to programmable IoT devices independently,

and possibly fulfill more complex needs. Let’s visualize a smart bulb as an IoT device. A smart bulb can refer to a traditional

bulb converted by and integrated with a chipset. By connecting the chipset-enabled light bulb to the Internet, the smart light

bulb can receive commands from—and transmit data automatically to—an AI-enabled digital voice assistant like Alexa. The

chipset and its Raspberry Pi (aka “Pi”) motherboard provide a gateway for a traditional bulb to become an IoT device, and thus

be accessible online.

Just about any traditional device can be converted by Pi to become an IoT device. The connectivity to the Internet—whether

through wired or wireless mechanisms—makes these devices (e.g., robotics, wearables, smart home appliances, or embedded

electronic teapots, etc.) accessible from anywhere. The feature of a single chip computer—compatible with various Linux

operating systems—makes Pi a highly customizable IoT solution. Moreover, the adoption of Pi is quite cost effective. Pi

provides affordable and easy customizability for technology innovators, and thus becomes an ideal substitute for expensive

IoT devices, like CCTV smart cameras. As Pi enables the construction of IoT devices, any technically savvy user can now

easily convert a traditional camera to a smart camera and create a complete smart home environment. Your refrigerator can

now provide a shopping list before you come home from work. You can communicate with—and instruct—Alexa to report

near real-time updates about your house or office, through Pi-enabled IoT devices, while you are on vacation.

As the deployment of these Pi-enabled IoT devices increases, the potential for cyber threats impacting these IoT devices

also increases. Hackers can now take controls over these IoT devices through the same Internet channel we would use to

connect. Moreover, these IoT devices can be controlled as cyber zombies and botnets to flood cyberinfrastructure with

distributed denial-of-service attacks. Our ability to understand how the filesystems work on the Pi-enabled IoT devices is

critical. This article discusses techniques and methodologies of timestamp investigation of Pi-enabled physical IoT devices

and compares the timestamps of these IoT devices with other Linux-based systems in both private and public Cloud

environments. More specifically, our research question is: to what extent do Raspberry Pi-enabled IoT devices differ when

compared to other ext4 filesystems in the Cloud?

2. Related Works

To understand digital forensics and how timestamps work in the Pi, we begin with a review of literature in cloud forensics and

IoT forensics.

2.1. Cloud Forensics
Cloud storage has become a necessity in information management practices, for both individuals as well as organizations.

Massive user demands have created additional framework options, such as “storage as a service” (StaaS) within cloud

computing architecture (Ho et al. 2018). As sensitive or critical information may be stored in the cloud, cloud storage has thus

become a target that attracts both curious users and malicious hackers. Chung et al. (2012) suggested the possibility of

extracting traces of evidence from activities, such as browsing, uploading, and downloading files, during the usage of cloud

storage services (e.g., Amazon S3, Dropbox, and Google Docs) in the local device (e.g., Windows 2000, XP, Vista, 7, or Mac

O/S), and analyzing these traces.

Quick and Choo (2013b) analyzed the Dropbox cloud service and gave specific descriptions of the type of terrestrial

artifacts and data remnants remaining on client devices such as Windows 7 and Apple iPhone 3G. More specifically, sufficient

file references—with a broad range of the file examinations including directory listings, prefetch files, link files, thumbnails,

registry, browser history, and memory captures—were concluded as being important in the overall determination of Dropbox

usage on a local device.

Martini and Choo (2012) proposed a cloud forensic framework; and moreover, Martini and Choo (2013) adopted and

validated this framework in an ownCloud case study, and suggested that an in-depth understanding of the artifacts is required

to undertake cloud storage forensics—both client and server forensics. As a result, Martini and Choo (2013) provided technical

recommendations of ownCloud StaaS instances, which include metadata analysis, authentication data, cached files, browser

artifacts, mobile client artifacts, as well as network data analysis. Quick and Choo (2013a) also proposed another cloud

forensics analysis framework, and this framework was adopted and validated in a Google Drive study (Quick and Choo 2014).

In the case of the Google Drive study, Quick and Choo (2014) provided a technique for finding the traces of digital forensic

evidences over several cloud platforms, and found that a user’s password for accounts on Google Drive was stored in cleartext

within the file (p. 182).

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 31

With the growing number of mobile phones and smart devices, pervasive connections via mobile devices and social

networks are growing exponentially. The investigate-ability of pervasive social networks and big data concerns law

enforcement agencies with regards to the ubiquitous presence of international crime. Quick and Choo (2017) proposed Digital

Forensic Intelligence Analysis Cycle (DFIAC), which was adopted from a cloud forensic analysis framework (Quick and Choo

2013a), and can be used in locating information across an increasing volume of forensically extracted data from mobile devices.

Based on DFIAC, Quick and Choo (2017) demonstrated how a huge volume of gigabytes data can be reduced to mere

megabytes when test data was converted into spreadsheets like csv, xls or xlsx. However, the ability to investigate on, and make

sense of, big data from pervasive mobile devices and social networks still lacks significantly in the discipline of cloud forensics.

Regarding Google Docs forensics, Roussev and McCulley (2016) proposed the concept of analyzing cloud-native digital

artifacts, and discussed the residual digital artifacts that maintain in the persistent state of web/SaaS applications. Such artifacts

can have a completely different structure and their state is often maintained in the form of a complete (or partial) log of user

editing actions. Several of Google’s APIs were examined, and observations were made to the Docs editor, Slides application

and changelog, drawings objects changelog, and Sheets API. “Track changes” functionality within the artifacts were similar

to how Microsoft Word would operate, but slightly different due to different formatting and user interface issues (p. S110).

Roussev et al. (2016) developed a cloud drive acquisition tool: kumodd, to analyze full API-based acquisition of Google Drive,

Dropbox, Box and Microsoft OneDrive. However, because this tool does not acquire cloud-native artifacts in their original

form, Roussev and McCulley (2016) developed a new proof-of-concept tool, called kumodocs, to extract and process the

history of documents and slides on Google Docs and Slides. This tool can also perform a quick privacy audit, as it can identify

all the images, suggestions, comments that have been ostensibly deleted but still can be recovered. Ho et al. (2018) further

explored the challenges of cloud forensics investigation into file access, transfer and operations, and identifying file operational

and behavioral patterns based on timestamps. Timestamp patterns were observed contributing to the law enforcement

community; a reference manual for uncovering data breach incidents occurring between the NTFS and ext4 filesystems in

cloud forensics investigations.

2.2. IoT Forensics
Conceptually, any device that can be controlled through remote access connectivity can be considered an IoT device. Raspberry

Pi can be easily adopted to the home environment. Casey (2015) suggested that smart home devices can be deployed in a wide

range of household appliances—controlled and accessed via the Internet, as well as through voice or text commands. These

smart home devices typically collect non-sensitive information such as energy sensor data or device usage; however, they can

also store sensitive information such as credit card details, users’ browsing history, and social networking activities. If hackers

are able to access and eavesdrop on these devices, it could potentially result in fraudulent transactions. Casey (2015) stressed

the importance of smart home forensics because of the possibilities of many new forms of burglary.

Raspberry Pi can also be deployed in healthcare and smart city context, due to its cost-effective features. Feng et al. (2017)

however suggested that Pi has structural and operations issues regarding the integrity of the device—especially if the device is

deployed as a processor. While several different Pi models were discussed, the authors examined and analyzed only the

physical media layer, media management layer, file system layer, application layer, network layer, and memory layer for the

Pi Model B (rev 2). Exploring the vulnerable side of the Pi, Feng et al. (2017) identified that the Raspbian operating system

uses the secure shell protocol (SSH) on port 22 to establish remote connections. However, security issues arise when port 22

continues to remain open in situations where remote access is not required. Also, the default user credentials for Raspbian is

well known to be the username ‘pi’ and password ‘raspberry,’ and users usually neglect to change this. One of the biggest

concerns is with the massive deployment of Pi. When Pi devices are deployed in millions of homes—and especially in a

healthcare context—the devices can be easily hijacked, turned into botnets, and used for automated distributed denial-of-

service (DDoS) attacks (p. 11).

In a healthcare context, Murray (2017) explored the ability of installing Kali Linux on Pi, and used the Pi device to foresee

penetration testing techniques. This study demonstrated how flexible the Pi can be when adopted as master nodes to perform

man-in-the-middle attack and denial of service attack, or as sensor nodes to simulate the communication with each other, or as

slave nodes (i.e., compromised zombies) to act based on the commands of master nodes. Murray (2017) proposed a revocable

key-policy attribute-encryption protocol to control access rights directly on encrypted data. This approach can secure eHealth

data sharing in the cloud environment between multiple organizations.

Ubiquitous use and always-on operation mode makes IoT devices a black box of user activities but can also become a great

source of potential digital evidence. Similar to the Zawoad and Hasan (2015) multi-level forensics approach, Chung et al.

(2017) further proposed a proof-of-concept Cloud-based IoT Forensics Tool (CIFT) in the study of Amazon Alexa ecosystem

with the embedded smart speaker system, Amazon Echo. This CIFT—combining cloud-native forensics with client-side

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 32

forensics—supports identification, acquisition and analysis of both native artifacts from the cloud as well as client artifacts

from local devices.

On the other hand, the popularity—and the always-on mode—also enables IoT devices to produce reams of data, which

challenges the investigation process in terms of extracting and processing evidence. Quick and Choo (2018) outlined a process

for bulk digital forensic data analysis that includes disparate device data. Based on the Digital Forensics Intelligence Analysis

Cycle described in Quick and Choo (2013a), Quick and Choo (2018) framed the process for digital forensics of disparate

device into multiple phases. This dataset was analyzed for two purposes: (1) to explore the reliability of data from a fitness

band device, and (2) to examine a process of analysis of a large volume of disparate data. Through these experiments, Quick

and Choo (2018) provided proof that a malicious user’s attempts to manipulate the time of activity in order to provide a false

alibi cannot succeed, because the true time/date settings will be corrected when files are uploaded to the associated account.

3. Study Framework

Since timestamps are critical components in IoT device forensics, our immediate objective was to collect timestamps from

different operating systems (Raspbian 9.14, UbuntuMATE, and Ubuntu 18.04), and to perform file operations from those ext4

filesystems—interacting with both a private cloud as well as the public cloud. We connected Raspbian Pi with Linux—

representing a private cloud, while ownCloud and Dropbox represented the public cloud. Our aim was to collect, observe and

compare timestamps of file operations, and to derive generalizable observation rules across different ext4 filesystems (Figure

1).

Figure 1. Study framework

3.1. Research Design and Experiment Setup
As Error! Reference source not found. illustrates, the research design is divided into three phases: 1) file operations on a

standalone machine, 2) file transfer with the private cloud (Ubuntu Linux), and 3) file synchronization with the public cloud

(ownCloud and Dropbox).

In this experiment, the extracted timestamp attributes include the create time (cr-time), modify time (m-time), access time

(a-time), and change time (c-time). To obtain these metadata, we leverage the debugfs tool by running the inode number of

that particular file in the debugfs. Inode is the index value of a file, which is a unique number in a partition. To set up debugfs,

we mount the debugfs program with root permission. After mounting debugfs, we run the ‘stat’ command, which gives the

inode value of the respected file and passes that inode value to the debugfs command to provide the timestamps of a file. The

same approach is used for the different filesystems, and results are used in comparison.

3.2. Computing Environment
Our computing environment was setup in the iSensor laboratory4 at Florida State University School of Information. File

operations were performed using test files, and timestamps were observed based on different attributes in the file timestamp

4 iSensor Lab: https://isensoranalytics.com/

Compare
Timestamps

Collect timestamps
from Raspberry Pi
(Raspbian 9.14 vs.

ubuntuMATE)

Collect from Private
Cloud

Collect from Public
cloud

Collect timestamps
from Ubuntu 18.04

Collect from Private
Cloud

Collect from Public
cloud

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 33

metadata. The following illustrates the computing environments adopted in three phases of the experiments. Two sets of

standalone physical Pi systems with different operating systems were setup. An Ubuntu Linux system was also set up for

timestamp comparison purpose because these three devices utilize the ext4 filesystem.

Figure 2. Experimentation design

⇒Raspberry Pi 3B+ with Raspbian 9.14 O/S

 o O/S: Raspbian with Debian Stretch v9.14 on 32-bit

o Instruction Set Architecture: arm v7

o Filesystem: ext4

o Browser: Chromium 72.0.3626.121

o Forensic Tool: Command line debugfs

o File type: Text file (.txt)

⇒Raspberry Pi 3B+ with UbuntuMATE O/S

 o O/S: UbuntuMATE 18.04 on 32-bit

o Instruction Set Architecture: arm v7

o Filesystem: ext4

o Browser: Firefox 67.0.1

o Forensic Tool: Command line debugfs

o File type: Text file (.txt)

⇒Ubuntu 18.04 O/S

 o O/S: Ubuntu 18.04 LTS on 64-bit

o Instruction Set Architecture: x86

o Filesystem: ext4

o Browser: Firefox 67.0.1

o Forensic Tool: Command line debugfs

o File type: Text file (.txt)

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 34

In the first phase, file operations were performed on two sets of standalone physical Pi systems with different operating

systems. One Ubuntu system was also set up for comparison purposes. Then, connections with both the private and public

Cloud were set up. The following file operations were performed and compared: create, compress, decompress, access, modify,

move, rename, copy and delete.

In the second phase, file transfer operations and interactions were performed between a Pi and an Ubuntu Linux system

within the private cloud (illustrated in Figure 2). The private cloud was also set up at the iSensor laboratory4—represented by

direct cable connection between the Pi’s and the Ubuntu Linux. Files were transferred between Pi’s and Ubuntu Linux system.

The following file operations were performed via SSH5 and compared: create, upload, and download.

⇒Private cloud

 o RJ45 Cat-6 Ethernet patch cable connection for office networks in a wired LAN

In the third phase, file transfer operations and interaction were performed between a Pi and public cloud (Figure 2). Files

were transferred from a Raspberry Pi to public cloud using a browser and self-synchronizing command line interface.

⇒Public cloud

 o ownCloud cloud service for Pi

o Dropbox cloud service for Ubuntu 18.04 LTS

o Internet connectivity: Florida State University FSUSecure Wi-Fi Networks

3.3. Data Collection
Timestamps were collected and recorded both before and after various file operations from the inode metadata information

collected using the debugfs tool. In Appendix A, the timestamps recorded during various file operations are given. Tables were

aggregated based on the timestamps recorded and compared during identical file operations in different settings.

3.4. Investigation Procedure
Both Pi devices (Raspbian 9.14 and UbuntuMATE) and Ubuntu (18.04) utilized an ext4 filesystem, and generated similar

inode reports using debugfs procedures. Basically, after each file was created, we accessed the inode number using the stat

command for that file. From there, we collected the timestamp metadata (i.e., cr-time, m-time, a-time, and c-time) before and

after each file operation was performed sequentially. We then recorded the changes on whether or not each file operation had

changed or updated the baseline timestamps.

The following steps were iteratively conducted and taken during each phase of the investigations.

Phase 1. Standalone file operations

o Step 1: Set up two Pi’s (Raspbian 9.14 and UbuntuMATE) and one Ubuntu Linux (18.04 LTS), and properly

install all of the starting software.

o Step 2: Determine the name of the ext4 filesystem used in each environment.

o Step 3: Mount the debugfs tool to the ext4 filesystem found in step 2 using root.

o Step 4: Create a test file and use the ‘stat’ command to determine the inode numb.

o Step 5: Use the debugfs tool to gather the first set of timestamps.

o Step 6: Collect a baseline timestamp before preforming each file operation, then perform the operation and collect

the new timestamp afterwards.

Phase 2. File transfer within the private cloud

o Step 1: Collect baseline timestamps on the test file.

o Step 2: Upload the test file to the private cloud environment.

o Step 3: Collect timestamps on the original file.

o Step 4: Download the test file and collect all timestamps again.

Phase 3. File synchronization with the public cloud

o Step 1: Collect baseline timestamps on the test file.

o Step 2: Synchronize the test file to either ownCloud or Drop.

o Step 3: Collect timestamps on the original file.

5 The ‘scp pi@ipaddress:myfile.txt’ command is used.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 35

4. Observations

Our objectives include three phases of observations of the file operations performed on: (1) a standalone physical Pi between

two operating systems, (2) file transfer operations within a private cloud, and (3) and file synchronization operations with

public cloud (represented by the interaction with either ownCloud or Dropbox).

During the phase one observation, we compared the timestamps on Pi (Raspbian 9.14 vs. UbuntuMATE) and additionally

Ubuntu 18.04. During the phase two observations, we compared file transfer operations and the interaction between Pi and

Ubuntu 18.04 in a private cloud. During the phase three observations, we compared file synchronization operations and the

interaction (1) between Pi and a public cloud (i.e., ownCloud), and (2) between Ubuntu and a public cloud (i.e., Dropbox). Our

observations are showcased in Table 1 through Table 3.

4.1. Preliminary Observations
Preliminary observations and baseline data were collected to identify how different Pi operating systems change the way

timestamps are collected in comparison with Ubuntu using the same sets of instructions on a text file (.txt). We observed that

the timestamps of file operations were slightly different between Raspbian 9.14 and UbuntuMATE. Moreover, we observed

significant differences between Raspberry Pi (armv7) and Ubuntu standalone system (x86) ext4 filesystems. These might be

caused by differences in the instruction set architecture.

4.2. Direct Observations
Based on the experiment, we observed two general differences—when a file is modified and deleted—between Raspberry Pi

running on Raspbian 9.14 and UbuntuMATE. The observations below are taken to compare timestamps across Raspbian 9.14,

UbuntuMATE and Ubuntu 18.04. Data of direct observations were documented and reported from Table 4 to Table 9 in

Appendix A.

4.2.1. Observation 1. File creation

The create time (cr-time) refers to the time of creation. When a file is created, all timestamps are recorded as the time of

creation depending on the file creation commands.

o Rule 1: Create time (c-time) = Access time (a-time) = Modify time (m-time) = Change time (c-time) when a file

is created using ‘nano’ or ‘echo’ commands. But if a file is created using ‘cat’ command, it updates the create

time and access time to the time of creation whereas it updates the modify time (m-time) and change time (c-time)

to the time of modification across Raspberry Pi and Ubuntu 18.04.

4.2.2. Observation 2. File compression

When a file is compressed, it changes the timestamps with the time of compression. However, the timestamps will vary

depending on different compression algorithms and operations.

o Rule 2: When a file is compressed using the ‘tar’ 6 command, all timestamps are changed to the time of

compression in both Raspberry Pi and Ubuntu 18.04 system.

o Rule 3: When a file is compressed using the ‘gzip’ 7 command, the change time (c-time) and the create time (cr-

time) are changed to the compression time, whereas the access time (a-time) and modify time (m-time) are not

changed in both Raspberry Pi and Ubuntu 18.04 system.

6 ‘tar’ is a Linux command used for file compression and decompression.
7 ‘gzip’ is a Linux command used for file compression and decompression.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

36

Table 1. File operations on standalone Raspberry Pi and Ubuntu
File
Operation

 Raspberry Pi Raspbian 9.14 Raspberry Pi UbuntuMATE Ubuntu Linux 18.04

 Create Modify Access Change Create Modify Access Change Create Modify Access Change

 cr-time m-time a-time c- time cr-time m-time a-time c- time cr-time m-time a-time c- time

1. Create nano No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change

 echo No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change

 cat No Change File

modification

time

No Change File

modification

time

No Change File

modification

time

No Change File

modification

time

No Change File

modification

time

No Change File

modification

time

2. Compress Tar(.tar) file

compression

time

file

compression

time

file

compression

time

file

compression

time

file

compression

time

file

compression

time

file

compression

time

file

compression

time

file

compression

time

file

compression

time

file

compression

time

file

compression

time

 Gzip (.gz) file

compression
time

No Change No Change file

compression
time

file

compression
time

No Change No Change file

compression
time

file

compression
time

No Change No Change file

compression
time

3.

Decompress

Tar(.tar) No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change file

decompression

time

No Change

 Gzip (.gz) No Change file

decompression

time

No Change file

decompression

time

No Change file

decompression

time

No Change file

decompression

time

No Change file

decompression

time

file

decompression

time

file

decompression

time

4. Access GUI No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change file access time No Change

 cat No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change file access time No Change

5. Modify GUI No Change File
modification

time

No Change File
modification

time

File
modification

time

File
modification

time

File
modification

time

File
modification

time

File
modification

time

File
modification

time

File
modification

time

File
modification

time

 nano No Change File

modification

time

No Change File

modification

time

No Change File

modification

time

No Change File

modification

time

No Change File

modification

time

File

modification

time

File

modification

time

6. Move mv No Change No Change No Change File move time No Change No Change No Change File move time No Change No Change No Change File move time

7. Rename rename No Change No Change No Change File rename

time

No Change No Change No Change File rename

time

No Change No Change No Change File rename

time

8. Copy cp*same

directory

No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change File copy time No Change

 cp*different

directory

No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change File copy time No Change

 cp*different

directory and

new name

No Change No Change No Change No Change No Change No Change No Change No Change No Change No Change File copy time No Change

9. Delete rm No Change File delete time No Change File delete time No Change No Change No Change File delete time No Change File delete time File copy time File delete time

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

37

Table 2. File transfer operations and interaction within the private Cloud

File Operation Raspberry Pi 9.14 with Ubuntu 18.04 Raspberry Pi UbuntuMATE with Ubuntu 18.04

 Create

time

Modify time Access

time

Change time Create

time

Modify time Access

time

Change time

 cr-time m-time a-time c-time cr-time m-time a-time c-time

Uploading a file from Pi to private cloud

(Linux)

No

Change

No Change No Change No Change No

Change

No Change No Change No Change

Downloading a file from private cloud (Linux)

to Pi

No

Change

File download

time

No Change File download

time

No

Change

File download

time

No Change File download

time

Table 3. File synchronization operations and interaction with the public Cloud (ownCloud)

File Operation Raspberry Pi 9.14 with ownCloud Raspberry Pi UbuntuMATE with ownCloud

 Create time Modify

time

Access

time

Change time Create time Modify

time

Access

time

Change time

 cr-time m-time a-time c-time cr-time m-time a-time c-time

Send file from Pi to cloud (OwnCloud) using sync No Change No Change No Change No Change No Change No Change No Change No Change

Send file from Pi to cloud (OwnCloud) using

browser

File upload

time

No Change No Change File upload

time

File upload

time

No Change No Change File upload

time

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 38

4.2.3. Observation 3. File decompression

The file compression forms the baseline timestamp. When a file is decompressed, both the time of decompression as well as

the time before the compression are recorded in timestamps.

o Rule 4: When a compressed file is decompressed using the ‘tar’ command, there is no change in the file’s

timestamps in Raspberry Pi where the access time (a-time) is updated to the time of decompression in Ubuntu

18.04 system.

o Rule 5: When a compressed file is decompressed using the ‘gzip’ command, the create time (cr-time) and access

time (a-time) are not changed, but the modify time (m-time) and change time (c-time) are changed to the time of

decompression in Raspberry Pi system whereas the create time (cr-time) remains the same while the rest of the

three timestamp characteristics are updated to the decompression time in the Ubuntu 18.04 system.

4.2.4. Observation 4. File access

On accessing a file without making any modifications, updates of the timestamp will change based on the latest time of access.

The timestamps are recorded depending on the mode of operation.

o Rule 6: When a file is accessed using both GUI and the ‘cat’ command, there is no change in the timestamps of

the file in Raspberry Pi system, but the access time (a-time) of the file is updated to the latest time of access in

Ubuntu 18.04 system.

4.2.5. Observation 5. Modify

When modifying a file, different operating environments each have an effect on the timestamps.

o Rule 7: When a file is modified using GUI, the create time (cr-time) and access time (a-time) are not changed, but

the modify time (m-time) and change time (c-time) are updated to the time of modification on Raspbian 9.14.

When a file is modified using GUI, all timestamps are updated to the time of file modification across

UbuntuMATE and Ubuntu 18.04. This is because the filesystem assigns a new inode value after the file is saved.

o Rule 8: When a file is modified using the ‘nano’ command, the create time (cr-time) and access time (a-time) are

not changed, but the modify time (m-time) and change time (c-time) are updated to the time of modification in

Raspberry Pi systems. However, the create time (c-time) is not changed, but the other three timestamps are updated

to the time of modification in Ubuntu 18.04 system.

4.2.6. Observation 6. Move

When moving a file, the timestamp remains the same in both Raspberry Pi systems as well as the Ubuntu 18.04 system.

o Rule 9: When a file is moved using the ‘mv’ command, the change time (c-time) is updated to the time of file

move, and the rest of the timestamps remain the same.

4.2.7. Observation 7. Rename

On renaming a file, the timestamp remains the same in both Raspberry Pi systems as well as Ubuntu 18.04 system.

o Rule 10: When a file is renamed, the change time (c-time) is updated to the time of rename, and the rest of the

timestamps remain unchanged.

4.2.8. Observation 8. Copy

On copying a file, a new file is created in the filesystem, which generates a new inode value with new timestamps, all reflecting

the time of creation. But this also makes some changes in the timestamps of the original file.

o Rule 11: When a file is copied in the same directory, or in a different directory using the same name, or into a

different directory using a different name, a new file is created with new timestamps reflecting the time of creation,

while the timestamp of the original file remains unchanged in Raspberry Pi systems.

o Rule 12: When a file is copied in the same directory, or in a different directory using the same name, or into a

different directory using a different name, a new file is created with new timestamps reflecting the time of creation,

but the access time (a-time) of the original file is updated to the time of creation of the new file in Ubuntu 18.04

system.

4.2.9. Observation 9. Delete

On deleting a file, some of the timestamp characteristics are updated with the time of file deletion depending on the operating

system.

o Rule 13: When a file is deleted, the create time (cr-time) and access time (a-time) are not changed, whereas the

modify time (m-time) and change time (c-time) are updated to the time of deletion in Raspbian 9.14 and Ubutntu

18.04 systems.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 39

o Rule 14: When a file is deleted, the change time (c-time) is updated to the time of deletion, but the rest of the

timestamps remain the same in UbuntuMATE.

4.2.10. Observation 10. File transfer to private cloud

We observed file operations when a file is transferred to a private cloud (Ubuntu 18.04). The ‘SCP’ (secure copy) command—

‘scp pi@ipaddress:myfile.txt’—is used.

o Rule 15: There is no change in the timestamp when uploading a file from the Raspberry Pi system to the private

cloud.

o Rule 16: The change time (c-time) and modification time (m-time) are updated to the time of download when the

same file is downloaded back to the same location on both Raspberry Pi’s.

4.2.11. Observation 11. File upload/ download to public cloud

The public cloud enables file synchronization. When a file is uploaded to the cloud, it is automatically synchronized with the

local drive. Thus, there is no download operation in our observations. We observed the file synchronization operation with the

public cloud. ownCloud is used as our public cloud through the self-synchronization system as well as through web browser.

o Rule 17: There was no change in the timestamps of the file when uploading a file to the public cloud using self-

synchronization system in both Raspberry Pi’s.

o Rule 18: The create time (cr-time) and change time (c-time) are updated to the time of upload while the rest of the

timestamps remain unchanged using a browser in both Raspberry Pi’s.

4.3. Cross-Sectional Observations
We compared different file operations across ext4 filesystems including Raspbian 9.14, UbuntuMATE, Ubuntu 18.04, Ubuntu

18.04 (VM), Ubuntu 14.04 (VM), and conducted cross- sectional analysis on timestamps collected during the same time period

to derive the following observation rules.

4.3.1. Observation 12. Updates of create time

We compared the file’s create time (cr-time) and derived that the create time is updated when a file is compressed, but not

updated when the file is decompressed, accessed, moved, renamed or copied.

o Rule 19: Create time is updated when the file is compressed across all five operating systems and updated when

the file is modified using a GUI across Ubuntu operating systems, but not Raspbian 9.14.

4.3.2. Observation 13. Updates of modify time

We compared the file’s modify time (m-time) and observed that the timestamp is updated when a file is created, compressed,

decompressed, and modified across all five file operations.

o Rule 20: Modify time (m-time) is updated when a file is created using ‘cat’ command, but not ‘nano’ and ‘echo’

commands across all operating systems.

o Rule 21: Modify time (m-time) is updated when a file is compressed using ‘tar’ command, but not ‘gzip’ command

across all operating systems.

o Rule 22: Modify time (m-time) is updated when a file is modified using both ‘GUI’ and ‘nano’ commands across

all the five platforms.

o Rule 23: Modify time (m-time) is updated when a file is deleted in Raspbian 9.14, Ubuntu 18.04 and Ubuntu 18.04

VM, but not in UbuntuMATE and Ubuntu 14.04 VM.

4.3.3. Observation 14. Updates of access time

We compared the file access time (a-time) and observed that it is updated when a file is compressed across all five operating

systems. However, the access time is also updated when a file is compressed, decompressed, accessed, modified, moved, or

copied in Ubuntu 18.04.

o Rule 24: Access time (a-time) is updated when a file is compressed using ‘tar’ across all five operating systems.

But the timestamp is updated only when a file is decompressed using ‘tar’ in virtual environment (Ubuntu 18.04

and Ubuntu 14.04). Also, the timestamp is updated when a file is compressed using ‘gzip’ in both Ubuntu 18.04,

but the timestamp is updated only when a file is decompressed using ‘gzip’ in both Ubuntu 18.04 and 14.04 VM.

o Rule 25: Access time (a-time) is updated when a file is accessed using both GUI and ‘cat’ command in Ubuntu

18.04.

o Rule 26: Access time (a-time) is updated when a file is modified using GUI in all Ubuntu systems whereas when

using a ‘nano’ command, it is updated in both Ubuntu 18.04 and Ubuntu 14.04.

o Rule 27: Access time (a-time) is updated when a file is renamed or moved only in Ubuntu 14.04.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 40

o Rule 28: Access time (a-time) is updated when a file is copied in both Ubuntu 18.04.

4.3.4. Observation 15. Updates of change time

We compared file change time and observed that it is updated when a file is created, compressed, decompressed, modified,

moved, renamed or deleted, across all five operating systems.

o Rule 29: Change time (c-time) is updated when a file is created using the ‘cat’ command across all five operating

systems, but it remains unchanged when ‘nano’ and ‘echo’ commands are used.

o Rule 30: Change time (c-time) is updated when a file is compressed using ‘tar’ and ‘gzip’ commands whereas the

c-time is updated only when a file is decompressed using the ‘gzip’ command.

o Rule 31: Change time (c-time) is updated when a file is modified, moved, renamed or deleted across five operating

systems using both GUI and the ‘nano’ command.

4.3.5. Observation 16. Deletion of disingenuous file

We compared the cross-sectional data of the file’s create time, access time, modify time and change time, and observed the

following rule:

o Rule 32: When a file’s create time (cr-time) is recorded to be later than the modify time (m-time) or access time

(a-time), it indicates that the file was uploaded or downloaded to the cloud from Raspberry Pi System.

5. Results and Discussion

When conducting forensic experiments on IoT devices (such as the Raspberry Pi), it is important to be aware of changes to the

inode timestamps incurred by various file operations. In this section, we not only discussed the significant changes of the file

operation on the current IoT forensics study of the ext4 filesystems, but also compared the current findings with the

observations of Ubuntu ext4 filesystems in the standalone as well as the cloud settings conducted by Ho et al. (2018).

5.1. Differences between Pi Raspbian 9.14 and Pi with UbuntuMATE O/S
Although the same set of file operations were performed, there is only one noticeable difference—i.e., when modifying a file

using GUI—as observed between two Raspberry Pi’s. When a file is modified using GUI, the modify time (m-time) and change

time (c-time) are updated to the time of modification in Raspbian 9.14. However, UbuntuMATE assigns a new inode number

to the modified file as soon it is saved. All four timestamps are updated to the time of modification (observation rule 7).

5.2. Differences between Pi Ext4 and Ubuntu Ext4
When comparing Pi’s operations with Ubuntu, we observed that the ext4 filesystems in Pi’s are less sensitive than the ext4

filesystems in Ubuntu. That is, we noticed six (6) significant differences between the Raspbian and the Ubuntu 18.04 ext4

filesystems. First, when a compressed file is decompressed using the ‘tar’ command, there is no change logged in Raspberry

Pi, whereas in Ubuntu, the access time (a-time) is updated to the time of decompression (observation rule 4). Second, when a

compressed file is decompressed using the ‘gzip’ command, the modify time (m-time) and change time (c-time) are updated

to the time of decompression in Raspberry Pi. However, the modify time (m-time), access time (a-time) and change time (c-

time) are updated to the decompression time is in Ubuntu (observation rule 5). Third, when a file is accessed using both GUI

and the ‘cat’ command, there is no change in the Raspberry Pi, but in Ubuntu the access time (a-time) of the file is updated to

the latest time of access (observation rule 6). Fourth, when a file is modified using GUI, the modify time (m-time) and change

time (c-time) are updated to the time of modification on Raspberry Pi. However, all timestamps are updated to the time of file

modification in Ubuntu (observation rule 7). Fifth, when a file is modified using the ‘nano’ command, the modify time (m-

time) and change time (c-time) are updated to the time of modification in Raspberry Pi whereas in Ubuntu 18.04 the modify

time (m-time), access time (a-time) and change time (c-time) are updated to the time of modification (observation Rule 8).

Finally, when a file is copied, all timestamps of the original file remain unchanged in Raspberry Pi whereas the access time

(a-time) of the original file is updated to the time of creation of the new file in Ubuntu (observation rule 12).

5.3. Differences between Ubuntu Ext4
To compare the differences of file operations among different Ubuntu ext4 filesystems, we further set up two virtual machines

(i.e., Ubuntu 18.04 and 14.04 VMs) in the Hyper-V management system (Table 10 in Appendix B)—running on Windows

Server 2016 Datacenter—so we could observe how ext4 filesystems of the same O/S behave on a different environments (i.e.,

physical vs. virtual) in order to compare our results with the findings from Ho et al. (2018). We adopted the same experimental

approaches—performing the same set of file operations and instructions as illustrated in Ho et al. (2018). As a result, we

observed five (5) differences when comparing both Ubuntu 18.04 and the Ubuntu 14.04 Virtual Machine. The behaviors of

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 41

the three Ubuntu systems are not completely the same. More specifically, both the Ubuntu 18.04 standalone system and Ubuntu

18.04 Virtual Machine have no difference in the three phases of the observations (Table 11). However, we attribute the ext4

filesystems in Ubuntu 18.04 as being more sensitive than ext4 filesystems in Ubuntu 14.04, which includes the following

differences.

First, when a file is accessed without making any modification using GUI or the ‘cat’ command, the access time (a-time)

is updated to the time of access in both Ubuntu 18.04, whereas there is no change in Ubuntu 14.04. Second, when a file is

moved, the change time (c-time) is updated to the time of move in both Ubuntu 18.04, whereas the access time (a-time) and

change time (c-time) are both updated to the time of move in Ubuntu 14.04. Third, when a file is renamed, the change time (c-

time) is updated to the time of rename in both Ubuntu 18.04 whereas the access time (a-time) and change time (c-time) are

both updated to the time of rename in Ubuntu 14.04. Fourth, when a file is copied, the access time of the original file is updated

to time of copy in both Ubuntu 18.04, whereas there is no change in Ubuntu 14.04. Fifth, when a file is deleted, the modify

time (m-time) and change time (c-time) are updated to the time of deletion in both Ubuntu 18.04, whereas only the change

time (c-time) is updated to the time of deletion in Ubuntu 14.04.

6. Conclusion

As cloud computing and the Internet of Things (IoT) become increasingly prevalent in everyday use, it is important for law

enforcement investigators to understand how these files operate, as well as how they are recorded and transferred in different

filesystems (e.g., the ext4 filesystem) over the Cloud environments. Timestamp metadata can change across the ext4

filesystems—even when executing the same file operations. This IoT forensics study was designed and conducted to examine

and compare how timestamps vary within IoT devices, particularly between Raspberry Pi (Raspbian 9.14 vs. UbuntuMATE)

and Ubuntu (e.g., 18.04). We further experimented on file transfer operations; from the Raspberry Pi (Raspbian 9.14 vs.

UbuntuMATE) to the private cloud (i.e., Ubuntu 18.04), and moved further into file synchronization operations from the

Raspberry Pi (Raspbian 9.14 vs. UbuntuMATE) to the public cloud (i.e., ownCloud and Dropbox).

We anticipate that the reasons for differences in some observations among the Pi’s are caused by the differences in their

O/S (i.e., Raspbian 9.14 vs. UbuntuMATE). We further anticipate the reasons for the differences between the Pi and Ubuntu

18.04 or 14.04 may be caused by the different architectures of the hardware processors (i.e., arm7 vs. X.86). Different versions

of hardware processors such as Raspberry Pi can support only arm architecture. In general, the Ubuntu 18.04 is more sensitive

than the Pi’s or the Ubuntu 14.04.

6.1. Limitations and Future Directions
The authors were able to analyze the ext4 filesystem in the Raspbian environments with arm architecture and Ubuntu with

X.86 architecture. Analyzing other proprietary IoT O/S—with Linux expansions—could provide for a more complete dataset

while also painting a more accurate picture of the IoT forensic investigative process. Although Raspberry Pi is an incredibly

versatile tool with boundless possibilities in the IoT field, it is still limited by its processing power, and must use extremely

lightweight distributions. Further exploration of the NTFS and FAT32 filesystems could provide a more comprehensive view

should these filesystems be adopted in the IoT world. In the current study, differences in timestamp metadata within ext4

filesystems were identified. The same examination of file operations could be performed on different Linux distributions,

which may yield a greater varied set of results and observations.

6.2. Implications to Practitioners
It is a common practice for organizations—both in public and private sectors—to store and access corporate information in

the cloud environment. The threats that organizations face and experience are twofold. First, IoT devices make the modern

lifestyle more connected, such as connected cars, homes, hospitals, healthcare facilities, retail stores, manufacturing, and smart

cities. However, the connectivity of IoT devices make our society more vulnerable as cyberinfrastruture can be compromised.

IoT devices can be used by hackers to form botnets and launch distributed denial-of-service (DDOS) attacks against corporate

backend servers that can exploit users’ privacy, which further cause safety concerns. Second, organizations face significant

white collar crime and insider threats in unauthorized modification of sensitive and/or classified information. It is critical for

cyber forensics practitioners to gain intrinsic knowledge and techniques of how file systems operate and behave for advanced

threat investigation. This study provides detailed steps and techniques for IoT forensics, and is significantly relevant to cyber

investigation. The study demonstrates mechanisms of digital evidence analysis and observation with regards to access and

modification of file systems within normal versus abnormal conditions.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 42

6.3. Contributions
The purpose of this study is to build a thorough understanding of how the ext4 filesystem timestamps reflect file operation

activities in cloud environments. This cyber forensics study—specifically, IoT forensics—was designed and conducted to

examine, compare and provide baseline observations for how timestamps change in the same ext4 filesystems between IoT

devices and Linux-based systems. The observations, techniques and methodologies discussed in this article contribute to a

thorough understanding of how the same ext4 filesystem timestamps work differently, or perhaps similarly, for Pi and Linux-

based systems (e.g., Ubuntu) in cloud environments. Furthermore, this study advances cyber forensics and cyber-criminal

investigation for use by the law enforcement and intelligence community.

Declaration of Conflicting Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The authors acknowledge Florida Center for Cybersecurity (FC2), also known as Cyber Florida, for the grant 3910-1007-00-

B 07/01/18—06/30/20.

Acknowledgments

The authors thank research assistant Raghav Rathi, and research participants including Alex Coalla, Ryan, Ratkovich, Michael

Costello, En-Cih Chang, and En-Chun Kuo. The authors also wish to thank Conrad F. Metcalfe for assistance in editing.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

43

Appendix A. Direct Observations of Timestamp during File Operations

Table 4. File standalone operations on Raspberry Pi with Raspbian 9.14, Raspberry Pi with UbuntuMATE, and Ubuntu Linux 18.04

 Raspberry Pi Raspbian 9.14 Raspberry Pi UbuntuMATE Ubuntu Linux 18.04

Operation Command Create Modify Access Change Create Modify Access Change Create Modify Access Change

 cr-time m-time a-time c- time cr-time m-time a-time c- time cr-time m-time a-time c- time

1. Create 1.1 nano

 nano 11.txt 9:46:45 9:46:45 9:46:45 9:46:45 11:16:45 11:16:45 11:16:45 11:16:45 11:46:40 11:46:40 11:46:40 11:46:40

 1.2 echo
 echo "Hello!">12.txt 9:49:24 9:49:24 9:49:24 9:49:24 11:24:03 11:24:03 11:24:03 11:24:03 11:48:02 11:48:02 11:48:02 11:48:02

 1.3 cat

 cat>13.txt 9:50:07 9:50:17 9:50:07 9:50:17 11:24:58 11:25:03 11:24:58 11:25:03 11:48:44 11:48:56 11:48:44 11:48:56

2.

Compress/Decompress

2.1 tar (compress)

 Baseline 9:55:53 9:55:53 9:55:53 9:55:53 11:28:13 11:28:13 11:28:13 11:28:13 10:20:44 10:20:44 10:20:44 10:20:44

 New (.tar) 9:56:47 9:56:47 9:56:47 9:56:47 11:30:20 11:30:20 11:30:20 11:30:20 10:22:52 10:22:52 10:22:52 10:22:52

 original(.txt) 9:55:53 9:55:53 9:55:53 9:55:53 11:28:13 11:28:13 11:28:13 11:28:13 10:20:44 10:20:44 10:22:52 10:20:44

 tar cvf 111.tar 11.txt

 2.2 tar(decompress)
 Baseline 9:56:47 9:56:47 9:56:47 9:56:47 11:30:20 11:30:20 11:30:20 11:30:20 10:22:52 10:22:52 10:22:52 10:22:52

 New (.txt) 9:59:23 9:55:53 9:59:23 9:59:23 11:32:59 11:28:13 11:32:59 11:32:59 10:25:19 10:20:44 10:25:19 10:25:26

 original(.tar) 9:56:47 9:56:47 9:56:47 9:56:47 11:30:20 11:30:20 11:30:20 11:30:20 10:22:52 10:22:52 10:25:00 10:22:52

 tar xvf 111.tar

 2.3 gzip (compress)
 Baseline 10:02:51 10:02:51 10:02:51 10:02:51 11:40:44 11:40:44 11:40:44 11:40:44 10:37:45 10:37:45 10:37:45 10:37:45

 New (.gz) 10:03:38 10:02:51 10:02:51 10:03:38 11:41:39 11:40:44 11:40:44 11:41:39 10:38:26 10:37:45 10:37:45 10:38:26

 original(.txt) 10:02:51 10:03:38 10:02:51 10:03:38 11:40:44 11:41:39 11:40:44 11:41:39 10:37:45 10:38:26 10:38:26 10:38:26

 gzip 12.txt

 2.4 gzip (decompress)
 Baseline 10:03:38 10:02:51 10:02:51 10:03:38 11:41:39 11:40:44 11:40:44 11:41:39 10:38:26 10:37:45 10:37:45 10:38:26

 New (.txt) 10:08:36 10:02:51 10:02:51 10:08:36 11:43:49 11:40:44 11:40:44 11:43:49 10:40:24 10:37:45 10:37:45 10:40:24

 original (.txt.gz) 10:03:38 10:08:36 10:02:51 10:08:36 11:41:39 11:43:49 11:40:44 11:43:49 10:38:26 10:40:24 10:40:24 10:40:24

 gzip -d 12.txt.gz

3. Access without Baseline 10:14:57 10:14:57 10:14:57 10:14:57 11:59:11 11:59:11 11:59:11 11:59:11 11:51:34 11:51:34 11:51:34 11:51:34
modification, or move 3.1 GUI(click) 10:14:57 10:14:57 10:14:57 10:14:57 11:59:11 11:59:11 11:59:11 11:59:11 11:51:34 11:51:34 11:52:44 11:51:34

 Baseline 10:14:57 10:14:57 10:14:57 10:14:57 11:59:11 11:59:11 11:59:11 11:59:11 11:53:59 11:53:59 11:53:59 11:53:59

 3.2 cat 10:14:57 10:14:57 10:14:57 10:14:57 11:59:11 11:59:11 11:59:11 11:59:11 11:53:59 11:53:59 11:54:36 11:53:59

 cat 13.txt

4. Modify 4.1 GUI
 Baseline 10:14:57 10:14:57 10:14:57 10:14:57 12:05:08 12:05:08 12:05:08 12:05:08 13:02:59 13:02:59 13:02:59 13:02:59

 4.1.txt 10:14:57 10:18:44 10:14:57 10:18:44 12:05:51 12:05:51 12:05:51 12:05:51 13:03:37 13:03:37 13:03:37 13:03:37

 4.2 nano

 Baseline 10:20:10 10:20:10 10:20:10 10:20:10 12:07:20 12:07:20 12:07:20 12:07:20 11:16:13 11:16:13 11:16:13 11:16:13

 nano 42.txt 10:20:10 10:21:03 10:20:10 10:21:03 12:07:20 12:07:48 12:07:20 12:07:48 11:16:13 11:16:50 11:16:38 11:16:50

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

44

5. Move Baseline 10:25:27 10:25:27 10:25:27 10:25:27 13:16:56 13:16:56 13:16:56 13:16:56 11:18:56 11:18:56 11:18:56 11:18:56

 mv 5.txt/home/Downloads 10:25:27 10:25:27 10:25:27 10:27:17 13:16:56 13:16:56 13:16:56 13:17:40 11:18:56 11:18:56 11:18:56 11:20:02

6. Rename Baseline 10:34:11 10:34:11 10:34:11 10:34:11 13:21:33 13:21:33 13:21:33 13:21:33 12:36:30 12:36:30 12:36:30 12:36:30

 Rename 10:34:11 10:34:11 10:34:11 10:35:07 13:21:33 13:21:33 13:21:33 13:23:04 12:36:30 12:36:30 12:36:30 13:37:32
 Mv 6.txt 6n.txt

7. Copy 7.1 Copy a file into the same

directory

 Baseline 10:36:47 10:36:47 10:36:47 10:36:47 13:25:01 13:25:01 13:25:01 13:25:01 12:42:05 12:42:05 12:42:05 12:42:05

 cp Copied 10:37:37 10:37:37 10:37:37 10:37:37 13:25:47 13:25:47 13:25:47 13:25:47 12:42:46 12:42:46 12:42:46 12:42:46
 Original 10:36:47 10:36:47 10:36:47 10:36:47 13:25:01 13:25:01 13:25:01 13:25:01 12:42:05 12:42:05 12:42:46 12:42:05

 cp 7.txt 7n.txt

 7.2 Copy a file into another

directory

 Baseline 10:37:37 10:37:37 10:37:37 10:37:37 13:25:47 13:25:47 13:25:47 13:25:47 12:44:24 12:44:24 12:44:24 12:44:24
 cp Copied 10:39:53 10:39:53 10:39:53 10:39:53 13:26:14 13:26:14 13:26:14 13:26:14 12:45:04 12:45:04 12:45:04 12:45:04

 Original 10:37:37 10:37:37 10:37:37 10:37:37 13:25:47 13:25:47 13:25:47 13:25:47 12:44:24 12:44:24 12:45:04 12:44:24

 cp 72.txt /home

 7.3 Copy a file into another

directory and give it a new name
 Baseline 10:39:53 10:39:53 10:39:53 10:39:53 13:26:14 13:26:14 13:26:14 13:26:14 12:47:05 12:47:05 12:47:05 12:47:05

 cp Copied 10:42:35 10:42:35 10:42:35 10:42:35 13:13:27 13:13:27 13:13:27 13:13:27 12:48:08 12:48:08 12:48:08 12:48:08

 Original 10:39:53 10:39:53 10:39:53 10:39:53 13:26:14 13:26:14 13:26:14 13:26:14 12:47:05 12:47:05 12:48:08 12:47:05

 cp 73.txt /home/73new.txt

8. Delete Baseline 10:44:07 10:44:07 10:44:07 10:44:07 13:29:11 13:29:11 13:29:11 13:29:11 12:52:07 12:52:07 12:52:07 12:52:07
 rm 10:44:07 10:44:52 10:44:07 10:44:52 13:29:11 13:29:11 13:29:11 13:23:36 12:52:07 12:52:39 12:52:07 12:52:39

 rm 8.txt d-time' 10:44:52 13:23:36 12:52:39

* Red color indicates a timestamp change (i.e., difference) recorded and observed—as compared with previous timestamp observation.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

45

Table 5. File standalone operations on Virtual Ubuntu Linux 18.04 and Virtual Ubuntu Linux 14.04 in Hyper-V Management

 Virtual Ubuntu Linux 18.04 Virtual Ubuntu Linux 14.04

Operation Command Create Modify Access Change Create Modify Access Change

 cr-time m-time a-time c- time cr-time m-time a-time c- time

1. Create 1.1 nano
 nano 11.txt 9:49:08 9:49:08 9:49:08 9:49:08 13:09:52 13:09:52 13:09:52 13:09:52

 1.2 echo

 echo "Hello!">12.txt 9:58:15 9:58:15 9:58:15 9:58:15 13:12:25 13:12:25 13:12:25 13:12:25

 1.3 cat

 cat>13.txt 9:59:20 9:59:28 9:59:20 9:59:28 13:17:42 13:17:59 13:17:42 13:17:59
2.Compress/Decompress 2.1 tar (compress)

 Baseline 10:01:56 10:01:56 10:01:56 10:01:56 13:21:54 13:21:54 13:21:54 13:21:54

 New (.tar) 10:04:36 10:04:36 10:04:36 10:04:36 13:22:28 13:22:28 13:22:28 13:22:28

 original(.txt) 10:01:56 10:01:56 10:04:36 10:01:56 13:21:54 13:21:54 13:22:28 13:21:54

 tar cvf 111.tar 11.txt
 2.2 tar(decompress)

 Baseline 10:04:36 10:04:36 10:04:36 10:04:36 13:22:28 13:22:28 13:22:28 13:22:28

 New (.txt) 10:06:08 10:01:56 10:06:08 10:06:08 13:24:26 13:24:26 13:21:54 13:24:26

 original(.tar) 10:04:36 10:04:36 10:06:03 10:04:36 13:22:28 13:22:28 13:24:26 13:22:28

 tar xvf 111.tar
 2.3 gzip (compress)

 Baseline 10:24:51 10:24:51 10:24:51 10:24:51 13:29:34 13:29:34 13:29:34 13:29:34

 New (.gz) 10:25:20 10:24:51 10:24:51 10:25:20 13:30:23 13:29:34 13:29:34 13:30:23

 original(.txt) 10:24:51 10:25:20 10:25:20 10:25:20 13:29:34 13:30:23 13:30:23 13:30:23

 gzip 12.txt
 2.4 gzip (decompress)

 Baseline 10:25:20 10:24:51 10:24:51 10:25:20 13:30:23 13:29:34 13:29:34 13:30:23

 New (.txt) 10:29:02 10:24:51 10:24:51 10:29:02 13:33:18 13:29:34 13:29:34 13:33:18

 original(.tar) 10:25:20 10:29:02 10:29:02 10:29:02 13:30:23 13:33:18 13:33:18 13:33:18

 gzip -d 12.txt.gz
3. Access without Baseline 10:35:36 10:35:36 10:35:36 10:35:36 13:53:02 13:53:02 13:53:03 13:53:02

modification, or move 3.1 GUI(click) 10:35:36 10:35:36 10:35:58 10:35:36 13:53:02 13:53:02 13:53:03 13:53:02

 3.2 cat

 Baseline 10:37:13 10:37:13 10:37:13 10:37:13 13:53:02 13:53:02 13:53:03 13:53:02

 cat 13.txt 10:37:13 10:37:13 10:37:36 10:37:13 13:53:02 13:53:02 13:53:03 13:53:02
4. Modify 4.1 GUI

 Baseline 10:38:46 10:38:46 10:38:46 10:38:46 13:53:02 13:53:02 13:53:03 13:53:02

 4.1.txt 10:39:32 10:39:32 10:39:32 10:39:32 13:55:24 13:55:24 13:55:25 13:55:24

 4.2 nano

 Baseline 10:41:13 10:41:13 10:41:13 10:41:13 13:58:50 13:58:50 13:58:52 13:58:50
 nano 42.txt 10:41:13 10:41:34 10:41:41 10:41:41 13:58:50 14:01:09 14:01:10 14:01:09

5. Move

 Baseline 10:46:38 10:46:38 10:46:38 10:46:38 14:04:13 14:04:13 14:04:14 14:04:13

 mv 5.txt/home/admin/Downloads 10:46:38 10:46:38 10:46:38 10:48:09 14:04:13 14:04:13 14:05:17 14:05:16

6. Rename Baseline 10:49:04 10:49:04 10:49:04 10:49:04 14:08:04 14:08:04 14:08:05 14:08:04

 rename 10:49:04 10:49:04 10:49:04 10:49:29 14:08:04 14:08:04 14:08:50 14:08:49

 Mv 6.txt 6n.txt

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

46

7. Copy 7.1 Copy a file into the same directory

 Baseline 10:58:05 10:58:05 10:58:05 10:58:05 14:10:26 14:10:26 14:10:27 14:10:26

 cp Copied 10:58:43 10:58:43 10:58:43 10:58:43 14:11:24 14:11:24 14:11:25 14:11:24

 Original 10:58:05 10:58:05 10:58:43 10:58:05 14:10:26 14:10:26 14:10:27 14:10:26

 cp 7.txt 7n.txt
 7.2 Copy a file into another directory

 Baseline 11:00:29 11:00:29 11:00:29 11:00:29 14:13:55 14:13:55 14:13:57 14:13:55

 cp Copied 11:01:08 11:01:08 11:01:08 11:01:08 14:14:40 14:14:40 14:14:41 14:14:40

 Original 11:00:29 11:00:29 11:01:08 11:00:29 14:13:55 14:13:55 14:13:57 14:13:55

 cp 42.txt /home
 7.3 Copy a file into another directory

and give it a new name

 Baseline 11:02:42 11:02:42 11:02:42 11:02:42 14:15:41 14:15:41 14:15:42 14:15:41

 cp Copied 11:03:19 11:03:19 11:03:19 11:03:19 14:17:10 14:17:10 14:17:11 14:17:10

 Original 11:02:42 11:02:42 11:03:19 11:02:42 14:15:41 14:15:41 14:15:42 14:15:41
 cp 43.txt /home/43new.txt

8. Delete Baseline 11:04:11 11:04:11 11:04:11 11:04:11 14:25:08 14:25:08 14:25:09 14:25:08

 rm 11:04:11 11:04:52 11:04:11 11:04:52 14:25:08 14:25:08 14:25:09 14:25:38

 rm 8.txt d-time' 11:04:52 14:25:38

* Red color indicates a timestamp change (i.e., difference) recorded and observed—as compared with previous timestamp observation.

Table 6. File transfer operations and interaction of Raspberry Pi with Private Cloud

 Raspberry Pi 9.14 with Ubuntu 18.04 Raspberry Pi UbuntuMATE with Ubuntu 18.04

 Operation Create Modify Access Change Create Modify Access Change

 cr-time m-time a-time c-time cr-time m-time a-time c-time

Send file from Client(pi) to cloud (Linux) Baseline 10:53:22 10:53:22 10:53:22 10:53:22 13:33:24 13:33:24 13:33:24 13:33:24
‘scp pi@ipaddress:myfile.txt’ command is used 10:53:22 10:53:22 10:53:22 10:53:22 13:33:24 13:33:24 13:33:24 13:33:24

Downloading file from cloud (Linux) on Client (Pi) Baseline 10:53:22 10:53:22 10:53:22 10:53:22 13:33:24 13:33:24 13:33:24 13:33:24

‘scp pi@ipaddress:myfile.txt’ command is used 10:53:22 11:00:04 10:53:22 11:00:04 13:33:24 13:35:10 13:33:24 13:35:10

* Red color indicates a timestamp change (i.e., difference) recorded and observed—as compared with previous timestamp observation.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

47

Table 7. File transfer operations and interaction of Ubuntu 18.04 with Private Cloud

 Physical Ubuntu 18.04 with Raspberry Pi Virtual Ubuntu 18.04 with Ubuntu 14.04 Virtual Ubuntu 14.04 with Ubuntu 18.04

 Operation Create Modify Access Change Create Modify Access Change Create Modify Access Change

 cr-time m-time a-time c-time cr-time m-time a-time c-time cr-time m-time a-time c-time

Uploading a file from Ubuntu baseline 14:31:37 14:31:37 14:31:37 14:31:37 14:47:35 14:47:35 14:47:35 14:47:35 14:36:01 14:36:01 14:36:02 14:36:01
system to private server 14:31:37 14:31:37 14:33:29 14:31:37 14:47:35 14:47:35 14:48:51 14:47:35 14:36:01 14:36:01 14:36:02 14:36:01

Downloading a file back to Ubuntu baseline 14:31:37 14:31:37 14:33:29 14:31:37 14:47:35 14:47:35 14:48:51 14:47:35 14:40:36 14:36:01 14:36:02 14:36:01

system from a private server 14:31:37 14:35:12 14:33:29 14:35:12 14:47:35 14:52:22 14:48:51 14:52:22 14:40:36 14:40:36 14:40:37 14:40:36

* Red color indicates a timestamp change (i.e., difference) recorded and observed—as compared with previous timestamp observation.

Table 8. File transfer operations and interaction of Raspberry Pi with Public Cloud (ownCloud)

 Raspberry Pi 9.14 with ownCloud Raspberry Pi UbuntuMATE with ownCloud

 Operation Create Modify Access Change Create Modify Access Change

 cr-time m-time a-time c-time cr-time m-time a-time c-time

Send file from Client(pi) to cloud (OwnCloud)

using sync baseline 10:28:51 10:28:51 10:28:51 10:28:51 14:59:50 14:59:50 14:59:50 14:59:50
 upload 10:28:51 10:28:51 10:28:51 10:28:51 14:59:50 14:59:50 14:59:50 14:59:50

using browser baseline 10:33:08 10:33:08 10:33:08 10:33:08 14:03:43 14:03:43 14:03:43 14:03:43

 upload 10:33:21 10:33:08 10:33:08 10:33:21 14:04:14 14:03:43 14:03:43 14:04:14

* Red color indicates a timestamp change (i.e., difference) recorded and observed—as compared with previous timestamp observation.

Table 9. File transfer operations and interaction of Ubuntu with Public Cloud (Dropbox)

 Physical Ubuntu 18.04 with Dropbox Virtual Ubuntu 18.04 with Dropbox Virtual Ubuntu 14.04 with Dropbox

 Operation Create Modify Access Change Create Modify Access Change Create Modify Access Change

 cr-time m-time a-time c-time cr-time m-time a-time c-time cr-time m-time a-time c-time

Send file from Client(Ubuntu) to cloud
(Dropbox) through terminal

baseline 11:02:14 11:02:14 11:02:14 11:02:14 10:58:39 10:58:39 10:58:39 10:58:39 10:47:49 10:47:49 10:47:49 10:47:49

Upload file from Client (Ubuntu) to cloud

(Dropbox) baseline 11:04:10 11:04:10 11:04:10 11:04:10 10:59:37 10:59:37 10:59:37 10:59:37 10:51:30 10:51:30 10:51:31 10:51:30

through browser 11:04:10 11:04:10 10:04:57 10:04:57 10:59:37 10:59:37 10:59:54 10:59:54 10:51:30 10:51:30 10:53:13 10:53:12

* Red color indicates a timestamp change (i.e., difference) recorded and observed—as compared with previous timestamp observation.

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)

48

Appendix B. Additional Ubuntu Virtual Machine Setup for Comparison Purposes

Table 10. Computing environments for Ubuntu virtual machines

Computing Environment Ubuntu 18.04 O/S Virtual Machine Ubuntu 14.04 O/S Virtual Machine

Specifications o O/S: Ubuntu 18.04 LTS on 64-bit

o Instruction Set Architecture: x86

o Filesystem: ext4

o Browser: Firefox 67.0.1

o Forensic Tool: Command line debugfs

o File type: Text file (.txt)

o O/S: Ubuntu 14.04 LTS on 64-bit

o Instruction Set Architecture: x86

o Filesystem: ext4

o Browser: Firefox 66.0.3

o Forensic Tool: Command line debugfs

o File type: Text file (.txt)

Private Cloud o Hyper-V Management Windows Server 2016 Datacenter o Hyper-V Management Windows Server 2016 Datacenter

Public Cloud o Dropbox o Dropbox

Table 11. File synchronization operations and interaction with the public Cloud (Dropbox)

File Operation Ubuntu Linux 18.04 with Dropbox Ubuntu Linux 18.04 VM with Dropbox Ubuntu Linux 14.04 VM with Dropbox

 Create

time

Modify

time

Access

time

Change

time

Create

time

Modify

time

Access

time

Change

time

Create

time

Modify

time

Access

time

Change

time

 cr-time m-time a-time c-time cr-time m-time a-time c-time cr-time m-time a-time c-time

Send file from Pi to cloud

(ownCloud) using sync

No

Change

No

Change

No

Change

No

Change

No

Change

No

Change

No

Change

No

Change

No

Change

No

Change

No

Change

No

Change

Send file from Pi to cloud

(ownCloud) using browser

No

Change

No

Change

File

upload

time

File

upload

time

No

Change

No

Change

File

upload

time

File

upload

time

No

Change

No

Change

File

upload

time

File

upload

time

ISSN 2753-9997 (online). The International Journal of Cyber Forensics and Advanced Threat Investigations under a Creative Commons License, Attribution-

ShareAlike 4.0 International License (CC BY-SA 4.0)

 49

References

Casey, E. 2015. "Smart Home Forensics," Digital Investigation (13), pp. a1-a2. doi: 10.1016/j.diin.2015.05.017

Chung, H., Park, J., and Lee, S. 2017. "Digital Forensic Approaches for Amazon Alexa Ecosystem," Digital Investigation

(22:Supplement), pp. S15-S25. doi: 10.1016/j.diin.2017.06.010

Chung, H., Park, J., Lee, S., and Kang, C. 2012. "Digital Forensic Investigation of Cloud Storage Services," Digital Investigation

(9:2), pp. 81-95. doi: 10.1016/j.diin.2012.05.015

Feng, X., Babatunde, O., and Liu, E. 2017. "Cyber Security Investigation for Raspberry Pi Devices," in: International Refereed

Journal of Engineering and Sciences. Bedfordshire, UK: University of Bedfordshire Repository, pp. 1-14.

Ho, S. M., Kao, D., and Wu, W.-Y. 2018. "Following the Breadcrumbs: Timestamp Pattern Identification for Cloud Forensics,"

Digital Investigation (24), pp. 79-94. doi: 10.1016/j.diin.2017.12.001

Martini, B., and Choo, K.-K. R. 2012. "An Integrated Conceptual Digital Forensic Framework for Cloud Computing," Digital

Investigation (9:2), pp. 71-80. doi: 10.1016/j.diin.2012.07.001

Martini, B., and Choo, K.-K. R. 2013. "Cloud Storage Forensics: Owncloud as a Case Study," Digital Investigation (10:4), pp.

287-299. doi: 10.1016/j.diin.2013.08.005

Murray, R. 2017. "A Raspberry Pi Attacking Guide," pp. 1-8.

Quick, D., and Choo, K.-K. R. 2013a. "Digital Droplets: Microsoft Skydrive Forensic Data Remnants," Future Generation

Computer Systems (29:6), pp. 1378-1394. doi: 10.1016/j.future.2013.02.001

Quick, D., and Choo, K.-K. R. 2013b. "Dropbox Analysis: Data Remnants on User Machines," Digital Investigation (10:1), pp.

3-18. doi: 10.1016/j.diin.2013.02.003

Quick, D., and Choo, K.-K. R. 2014. "Google Drive: Forensic Analysis of Data Remnants," Journal of Network and Computer

Applications (40), pp. 179-193. doi: 10.1016/j.jnca.2013.09.016

Quick, D., and Choo, K.-K. R. 2017. "Pervasive Social Networking Forensics: Intelligence and Evidence from Mobile Device

Extracts," Journal of Network and Computer Applications (86), pp. 24-33. doi: 10.1016/j.jnca.2016.11.018

Quick, D., and Choo, K.-K. R. 2018. "Iot Device Forensics and Data Reduction," IEEE Access (6:Special section on Internet-

of-Things (IoT) big data trust management), pp. 47566-47574. doi: 10.1109/ACCESS.2018.2867466

Roussev, V., Barreto, A., and Ahmed, I. 2016. "Api-Based Forensic Acquisition of Cloud Drives," Proceedings of the IFIP

International Conference on Digital Forensics: Advances in Digital Forensics XII (DigitalForensics 2016), New

Delhi, India: Springer, pp. 213-235. doi: 10.1007/978-3-319-46279-0_11

Roussev, V., and McCulley, S. 2016. "Forensic Analysis of Cloud-Native Artifacts," Digital Investigation (16:Supplement),

pp. S104-S113. doi: 10.1016/j.diin.2016.01.013

Zawoad, S., and Hasan, R. 2015. "Faiot: Towards Building a Forensics Aware Eco System for the Internet of Things,"

Proceedings of the 2015 IEEE International Conference on Services Computing (SCC'15), New York, NY: IEEE, pp.

279-284. doi: 10.1109/SCC.2015.46

